
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	
SIAM CSE15 Minisymposium Talk 3/18/15	

Block-Based Analysis of Scientific Data	

“I have had my results for a long time, but I do not yet
know how I am to arrive at them.”	

	
–Carl Friedrich Gauss, 1777-1855

8 processes 4 processes 1 process

Parallel data analysis consists of decomposing a problem into blocks,
operating on them, and communicating between them.	

Preliminaries	

2	

Moving from Postprocessing to
Run-Time Scientific Data

Analysis in HPC ���
	

3	

Analyze!

Postprocessing analysis
and visualization	

Run-time analysis and
visualization 	

Parallel Data Analysis	

4	

Streamlines and pathlines Stream surfaces

FTLE Information entropy

Morse-Smale
complex

Voronoi
Tessellation

•  Big science => big data, big
machines	

•  Most analysis algorithms are not
up to speed	

•  Either serial, or 	

•  Overheads kill scalability	

•  Solutions	

•  Process data closer to the
source	

•  Write scalable analysis
algorithms	

•  Parallelize in various forms	

	

Question: What is the best abstraction
to express parallelism?	

Abstractions Matter: Think Blocks, not Tasks	

5	

•  Block = unit of decomposition	

•  Block size, shape can be configured	

•  From coarse to fine	

•  Regular, adaptive, KD-tree	

•  Block placement is flexible, dynamic	

•  Blocks per task	

•  Tasks per block	

•  Memory / storage hierarchy	

•  Data is first-class citizen	

•  Separate operations per block	

•  Thread safety	

Parallel data analysis consists of decomposing a problem into blocks, operating
on them, and communicating between them.	

The What and Why of a Block-Based Approach	

6	

Partition Data Into
Blocks	

7	

The block is the basic
unit of data
decomposition. Original
dataset is decomposed
into generic subsets
called blocks, and
associated analysis items
live in the same blocks.
Blocks don’t have to be
“blocky.” Any
subdivision of data (eg., a
set of graph nodes, a
group of particles, etc.) is
a block.	

Structured Grid

AMR Grid

Unstructured Mesh

Graph

Create Multiple Decompositions	

8	

���������	�
�
����
����	��������
���

�����������	���
�	����������
������
����������
�������	�

�	�
����	��������
���

����������������
��������
������
��	����	��������	������������
�����
����������

���������	�
�����
��
����
� ���	�
�����������
��
����
���
�����

���

���	�
���������
�����������	���
�
� �����
��	����������	���
��	�
���

Uses:	

	

1.  Organize input

(upper right)	

2.  Second
decomposition
suited for
particular analysis
(lower right)	

3.  Comparing
multiple unrelated
data domains (not
shown)	

Distinguish Between Blocks and Processes	

9	

All data movement operations are per block; blocks exchange information with
each other using regular communication patterns. Runtime manages and optimizes
exchange between processes based on the process assignment. This allows for
flexible process assignment as well as easy debugging.	

8 processes 4 processes 1 process

Handle Time	

10	

	

-Time often goes forward only	

-Usually do not need all time steps at once	

Hybrid 3D/4D time-space decomposition. Time-space is represented by 4D blocks that
can also be decomposed such that time blocking is handled separately. 	

3D Spatial Extent

(Xmin, Ymin, Zmin, Tmin)

(Xmax, Ymax, Zmax, Tmax)

(Xmin, Ymin, Zmin)

(Xmax, Ymax, Zmax)
(Tmin)

(Tmax)

time

t1
t0

t2

spatial block
vertices

temporal
block

time steps

t3
t2

t4

t5
t4

t6

4D Block

4D Neighborhood
(not drawn)

3D Spatial Neighborhood 1D Temporal Neighborhood

4D 3D 1D

1D Temporal Extent

Group Blocks into Neighborhoods	

11	

	

-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and
knowledge of other blocks (not master-
slave global knowledge)	

Two examples of 3 out of a total of 25 neighborhoods

block
gid

block
extents

neighbor
gid, pid,
extents

...

block
gid

block
extents

...

...

block
gid

block
extents

...

lid = 0

lid = 1

lid =
nblocks - 1

gid = global block identification
lid = local block identification
pid = process identification

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents

neighbor
gid, pid,
extents

Communicate Locally and Globally Between Blocks	

12	

Round 0
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 1

Results

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 0
k = 4 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 1
k = 2

Results

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Round 0
k = 4

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

8 10 12 14

8 12

Round 1
k = 2

Results

Nearest neighbor	
 Swap-based
reduction	

Merge-based
reduction	

Different Neighborhood Communication Patterns	

13	

Provide point to point and different varieties of collectives within a neighborhood by
enqueing and subsequently exchanging items (2 steps).	

�����������	�
�������������
�
���������������
���	

�������������������

�������������������
�����
�����������������������

������������������������������
�
���������������	��������
�

How to enqueue items
for neighbor exchange	

•  Send to a particular
neighbor or neighbors,
send to all nearby
neighbors, send to all
neighbors	

•  Support for periodic
boundary conditions
involves tagging which
neighbors are periodic
and calling user-defined
transform on objects
being sent to them	

14	

Left: 64 surfaces each seeded with 512 particles are advected in a 504x504x2048 simulation of a
solar flare. Right: 64 surfaces each with 2K seeds in a 2K x 2K x 2K Nek5000 thermal hydraulics
simulation. Time excludes I/O.	

Migrate Blocks for Load Balancing (for Stream Surfaces)	

Lu et al., Scalable Computation of Stream Surfaces on Large Scale Vector Fields, SC14.

Courtesy Kewei Lu

15	

Easily Write OOC and Multithreaded Algorithms	

With Dmitriy Morozov, LBNL

Left: In- and out-of-core performance of watershed segmentation. Right: In- and out-of core
performance of Voronoi tessellation..	

Left: Automatic threading of Voronoi tessellation. Right: comparison between manual and
automatic threading of density estimation.	

One Example in Greater Detail	

16	

Parallel Tessellation���
���

We developed a prototype library for computing in situ Voronoi and Delaunay
tessellations from particle data and applied it to cosmology, molecular dynamics,

and plasma fusion. ���
	

Key Ideas	

•  Mesh tessellations convert sparse point
data into continuous dense field data.	

•  Meshing output of simulations is data-
intensive and requires supercomputing
resources	

•  No large-scale data-parallel tessellation
tools exist.	

•  We developed such a library, tess.	

•  We achieved good parallel
performance and scalability.	

•  Widespread GIS applicability in addition
to the datasets we tested.	

17	

Scalability	

18	

Strong and weak scaling for up to
20483 synthetic particles and up to
128K processes (excluding I/O)
shows up to 90% strong scaling
and up to 98% weak scaling.	

Applications in Cosmology	

19	

Histogram of Cell Density Contrast at t = 11

Cell Density Contrast ((density − mean) / mean)

N
um

be
r o

f C
el

ls

0
50

0
10

00
15

00

100 bins
Range [−0.77 , 0.59]
Bin width 0.014
Skewness 1.6
Kurtosis 4.1

−0.768 −0.496 −0.225 0.046 0.318 0.589

Histogram of Cell Density Contrast at t = 21

Cell Density Contrast ((density − mean) / mean)

N
um

be
r o

f C
el

ls

0
50

0
10

00
15

00
20

00 100 bins
Range [−0.77 , 2.4]
Bin width 0.033
Skewness 2
Kurtosis 5.5

−0.77 −0.13 0.52 0.84 1.16 1.48 1.80 2.12 2.45

Histogram of Cell Density Contrast at t = 31

Cell Density Contrast ((density − mean) / mean)

N
um

be
r o

f C
el

ls

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 100 bins
Range [−0.72 , 15]
Bin width 0.15
Skewness 4.5
Kurtosis 23

−0.72 2.33 3.85 5.38 6.90 8.42 9.95 11.47 14.52

t=11 	
 	
 t=21 	
 	
t=31 	
	

Temporal structure
dynamics: As time
progresses, the range
of cell volume and
density expands,
kurtosis and
skewness increases,
consistent with the
governing physics.	

Strong scaling (excluding I/
O time) using CGAL for
three time steps of HACC
data of 10243 particles. At
later time steps, particles
cluster into extremely
dense and sparse regions,
affecting load balance and
reducing efficiency from
77% at t=68 to 14% at t =
499.	

Summary	

20	

Recap	

Block abstraction for parallelizing data analysis allows one to:	

	

•  Decompose data into blocks	

•  Assign blocks to processing elements	

•  Have several decompositions at once	

•  Overload blocks, migrate blocks between processing elements	

•  Communicate between blocks	

•  Migrate blocks in and out of core	

•  Thread blocks with finer-grained processing elements	

All made possible by choosing blocks as the parallel abstraction	

	

Think Blocks!	

	

21	

Further Reading	

22	

DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y.,
Chaudhuri, A.: Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of
Large Data Analysis and Visualization Symposium (LDAV'11), IEEE Visualization
Conference, Providence RI, 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012
EuroMPI Special Session on Improving MPI User and Developer Interaction IMUDI'12,
Vienna, AT.	

DIY applications	

•  Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J., Zagaris, G.:
Meshing the Universe: Integrating Analysis in Cosmological Simulations. Proceedings of
the SC12 Ultrascale Visualization Workshop, Salt Lake City, UT.	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.:
Scalable Computation of Distributions from Large Scale Data Sets. Proceedings of 2012
Symposium on Large Data Analysis and Visualization, LDAV'12, Seattle, WA.	

•  Peterka, T., Morozov, D., Phillips, C.: High-Performance Computation of Distributed-
Memory Parallel 3D Voronoi and Delaunay Tessellation. Proceedings of SC14, New
Orleans, LA, 2014.	

•  Lu, K., Shen, H.-W., Peterka, T.: Scalable Computation of Stream Surfaces on Large Scale
Vector Fields. Proceedings of SC14, New Orleans, LA, 2014.	

	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

Acknowledgments:	

	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

	

Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	

DOE SciDAC SDAV Institute	

https://bitbucket.org/diatomic/diy	

	

“The purpose of computing is insight, not numbers.”	

	
–Richard Hamming, 1962

SIAM CSE15 Minisymposium Talk 3/18/15	

